

HDZ-003-1163004 Seat No. ____

M. Sc. (Sem. III) (CBCS) Examination

November/December - 2017

Mathematics: MATHS. CMT-3004

(Disctrete Mathematics) (New Course)

Faculty Code: 003 Subject Code: 1163004

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) Answer all the quesitons.

(2) Each question carries 14 marks.

1 Answer any Seven:

 $7 \times 2 = 14$

- (a) Let A be a nonempty set. Define the concept of the free semigroup generated by A.
- (b) Let $A = \{0,1\}$. Show that the following expressions are regular expressions over A.
 - (i) $0*(0 \lor 1)*$
 - (ii) $(01)*(01 \lor 1*)$
- (c) Define a complemented lattice and illustrate it with an example.
- (d) Let $f: (S, *) \to (T, *')$ be a homomorphism of semigroups. If f is onto and if (S, *) is a monoid, then show that (T, *') is a monoid.
- (e) Define a Boolean Algebra. State the reason why the diamond lattice is not a Boolean Algebra.
- (f) Let $L \subseteq \{x, y\}^*$. When is L said to be a type 2 language over $\{x, y\}$?
- (g) Define a (i) phrase structure grammar and a (ii) Moore machine.
- (h) Define a machine congruence on a finite state machine.

- (i) State Kleene's theorem.
- (j) Define a modular lattice. Illustrate that a finite lattice need not be modular.
- 2 Answer any Two:

 $2 \times 7 = 14$

- (a) State and prove the fundamental theorem of homomorphism of semigroups.
- (b) Let (L, \leq) be a lattice. Show that (L, \leq) is distributive if and only if for all.

$$a, b, c \in L, (a \land b) \lor (b \land c) \lor (c \land a) = (a \lor b) \land (b \land c) \land (c \lor a)$$

- (c) Let $n \ge 1$ and let $f: B_n \to B$. Prove that f is produced by a Boolean expression.
- **3** (a) Let G be a group and let H be a normal subgroup of G. Let R be a relation defined on G by aRb if and only if $ab^{-1} \in H$. Prove that R is a congruence relation on G.
 - (b) Let V be a vector space over a field F. Show that the lattice of subspaces of V is modular.
 - (c) Let $f: A \to B$ be a bijection. If (A, \leq_A) is a partially ordered set, then show that we can define a relation \leq_B on B such that (B, \leq_B) is a poset and $f: (A, \leq_A) \to (B, \leq_B)$ is an isomorphism of posets.

OR.

- 3 (a) Let $n \ge 1$. Prove that D_n , the lattice of positive divisors of n is distributive.
 - (b) Let $G = (V, S, v_0, \mapsto)$ be a phrase structure grammar in **5** which $\{v_0, x, y, z\}$, $S = \{x, y, z\}$, and the productions are given by
 - (1) $v_0 \mapsto xv_0$,
 - (2) $v_0 \mapsto yv_0$, and
 - (3) $v_0 \mapsto z$.

Find L(G)

- (c) Let R be a symmetric relation defined on a nonempty set A. Prove that R^{∞} is symmetric.
- 4 Answer any Two:

 $2 \times 7 = 14$

- (a) Let (L, \leq) be a finite Boolean Algebra. Prove that the number of atoms of (L, \leq) is equal to the number of coatoms of (L, \leq) .
- (b) Let $M = (S, I, \mathcal{F}, s_0, T)$ be a Moore machine. Prove that there exists a type 3 phrase structure grammar G with I as its set of terminal symbols such that L(M) = L(G).
- (c) Let $M = (S, I, \mathcal{F}, s_0, T)$ be a Moore machine. If R is the w-compatibility relation defined on S, then show that R is a machine congruence on M and L(M) = L(M/R).
- **5** Answer any Two:

 $2 \times 7 = 14$

- (a) Let $M = (S, I, \mathcal{F}, s_0, T)$ be a Moore machine. If $w \in L(M)$ is such that $l(w) \ge |S|$, then show that there exist $w_1, w_2, w_3 \in I^*$ such that $l(w_2) > 0$, $w = w_1 w_2 w_3$ and $w_1 w_2^k w_3 \in L(M)$ for all $k \ge 0$.
- (b) For the languages given in
 - (i) and (ii) below, construct a phrase structure grammar G such that L(G) = L.
 - (i) $L = \{a^n b^m \mid n \ge 1, m \ge 3\}$
 - (ii) $L = \left\{ x^n y^m \mid n \ge 2, m \ge 0 \text{ and even} \right\}$

- (c) Let (L, *) be a commutative semigroup in which a * a = a for all $a \in L$. Prove that the relation \leq defined on L by $a \leq b$ if and only if a * b = b is a partial order and for any $a, b \in L, a * b$ is the least upper bound of $\{a, b\}$ in (L, \leq) .
- (d) Let $M=(S, I, \mathcal{F}, s_0, T)$ be a Moore machine. For each $n \geq 0$, let R_n be the relation defined on S by $s_i R_n s_j$ if and only if s_i and s_j are w-compatible for all $w \in I^*$ with $l(w) \leq n$. Let $k \geq 0$ and let $s, t \in S$. Show that the following statements are equivalent:
 - (i) $sR_{k+1}t$
 - (ii) sR_kt and $f_x(s)R_kf_x(t)$ for each $x \in I$.

[80/8]